摘要
不同时间尺度上的水文序列预测在水资源调配和防洪减灾决策中起着重要的作用。提出了一种基于小波分解和非线性自回归神经网络相结合的水文时间序列预测模型(WNARN)。运用Daubechies 5(db5)离散小波将水文序列数据分解为低频和高频子序列,作为非线性自回归神经网络模型(NARN)的输入变量,贝叶斯正则化优化算法用来泛化网络,训练模型对各子序列进行模拟预测,预测值经db5小波重构后得到原序列预测值。利用渭河流域三个水文站40多年的月径流量序列对所提出的WNARN模型进行验证和向前48步的预测能力测试,并与单一NARN模型的验证和预测结果进行对比。结果显示在相同的网络结构下所提出的方法能够显著提高水文序列的预测精度、预测周期及对重大水文事件的预测性,具有较高的泛化能力。