摘要

针对大部分基于深度学习(Deep Learning, DL)的信道估计算法估计高维信号时出现的训练开销过大、泛化能力差等问题,提出了一种不需要训练的基于深度学习的高维信号信道估计算法,即UTCENet(Untrained Channel Estimation Network)。在UTCENet中,信道信息上的复杂分布转换为模型参数上的简单分布,即通过神经网络参数化来获得隐式先验知识并将其应用于信道估计。虽然该算法不需要任何训练,但保证了估计的性能,其原因在于专门设计的网络模型可以有效利用时频网格中元素的相关性。仿真结果表明,与传统方法以及现有的深度学习方法相比,所提出的算法在归一化均方误差和误码率方面性能提升明显。