摘要

针对新冠疫情影响下家政服务从业人员对家政服务课程在线学习需求的增加,而现有的家政服务课程在线学习网站存在资源较少、课程不够系统化和不具有课程推荐功能等状况,使得家政服务相关从业人员的在线学习门槛变高。通过分析现有的家政服务课程在线学习网站,提出构建家政服务课程知识图谱,并将家政服务课程知识图谱与推荐算法进行融合,设计一种融合深度学习技术的规则与水波偏好传播相结合的R-RippleNet家政服务课程推荐模型。R-RippleNet模型使用对象包括老学员和新学员,老学员部分是基于水波偏好传播模型进行课程推荐,新学员部分是基于规则模型进行课程推荐。实验结果表明,老学员使用R-RippleNet模型的AUC值为95%,ACC值为89%,F1值为89%,新学员使用R-RippleNet模型的总体精确率均值为77%,NDCG均值为93%。