基于U-net卷积神经网络图像分割的波浪测量方法

作者:任志伟; 陈松贵*; 王收军; 王佳伟
来源:中国海洋大学学报(自然科学版), 2022, 52(09): 125-132.
DOI:10.16441/j.cnki.hdxb.20210195

摘要

针对水体运动导致电子传感装置测量结果准确性下降的问题和阈值分割法无法在光照场景下测量波面的问题,文章提出了一种基于U-net卷积神经网络的波浪测量方法。实验过程首先由高清摄像机录制水槽中的波浪运动过程,将视频处理成时间连续的波面图像,其次通过U-net卷积神经网络对波面图像进行图像分割并提取水位线数据信息,最后求出波高和周期。以像素识别结果为基准,将本研究方法的测量结果与波高传感器的测量结果进行误差对比,结果表明U-net卷积神经网络的相对误差最大为2.25%,而传感器误差最大为4.15%,且实验组中U-net卷积神经网络测得平均波高的相对误差均在2.5%以内,平均周期的误差都低于1%。因此,基于U-net卷积神经网络的测量方法可用于实验室的波浪测量。

全文