摘要

构造模型决策树时超参数较多,参数组合复杂,利用网格搜索等调参方法将会消耗大量的时间,影响模型性能的提升。提出了一种多核贝叶斯优化的模型决策树算法,该算法为应对不同分类数据特性,采用三种高斯过程建模寻优,利用贝叶斯优化技术,选出最优的参数组合。实验结果表明,所提算法在参数寻优上要优于传统的模型决策树寻优方法,并且能够在迭代次数不多的情况下找到全局最优参数值,在一定程度上提升了算法的分类性能,节省了大量的调参时间。