摘要
针对传统单向循环神经网络在配电网超短期功率预测领域存在的预测曲线失形、模型过拟合现象以及预测精度不高和收敛速度慢等问题,提出基于小波变换和自注意力机制的双向循环神经网络改进模型。通过双向结构学习功率数据的前向和逆向规律提高模型预测精度;通过小波变换分摊整体功率预测难度以及改善过拟合和加快模型收敛速度;通过自注意力机制把握模型隐藏层维度关系进一步提高预测精度。算例证明改进模型可以有效改善上述问题,改进模型与传统单向模型相比,在有功预测场景中,MAE提升了50.1%,MAPE提升了43.3%,RMSE提升了51.1%;在无功预测场景中,MAE提升了60.5%,MAPE提升了63.8%,RMSE提升了60.1%。
-
单位国网北京市电力公司; 国网冀北电力有限公司信息通信分公司; 华北电力大学; 电子工程学院