摘要
昂贵大规模优化问题存在着决策变量之间高度耦合、求解容易陷入局部最优以及目标评价昂贵等问题,导致在资源有限的情况下很难获得全局最优解。为此,基于合作型协同演化策略提出了一种惯性分组和重叠特征选择的方法来辅助求解昂贵大规模优化问题。首先,采用重叠特征选择技术将一个大规模优化问题分解为若干个低维的重叠子问题,并对每一个子问题进行独立的代理模型辅助的优化搜索。其次,将每个子问题搜索获得的潜力个体合成一个完整的解,对其使用昂贵目标函数进行评价。再次,算法还采用惯性分组技术控制优化过程中重新分组的频率以延长分组方案的开发周期,从而提升优化效果。最后,为了测试所提算法的性能,将其与求解昂贵大规模问题的3种优化算法在CEC2013的15个基准函数上获得的实验结果进行了对比。结果表明:所提算法在求解昂贵大规模优化问题上具有一定的竞争力,尤其适用于求解部分可分离、重叠或完全不可分离等问题。
- 单位