摘要

针对二维主成分分析法(2DPCA)与主成分分析法(PCA)相结合提取人脸特征时效率不高的问题,提出一种2DPCA和快速PCA结合与改进灰狼算法(EGWO)共同优化支持向量机的人脸识别方法。该方法在特征提取方面运用2DPCA与快速PCA相结合,以减少提取特征的维数和提取时间,从而缩短了SVM所需的识别时间。为了提高灰狼算法的全局搜索能力,引用精英反向学习策略初始化种群个体,有效增强GWO的勘探和开采能力,再将其使用到SVM中,迭代获取最佳核参数和惩戒参数,将训练得到的最终分类器应用于人脸识别中。通过6个基准测试函数与GWO和反向学习灰狼算法(OGWO)进行性能比较,改进灰狼算法的收敛精度和收敛速度更优;经ORL和Yale中的人脸图像实验,证明了改进算法相对于GWO、粒子群算法(PSO)和差分进化算法(DE)结合SVM模型的识别结果更佳且稳定性更强。