摘要
充分考虑不同数据源在变化场景下的数据差异性和行人在导航定位服务中的空间认知习惯,提出了一种融合可视地标与不可视地标的行人相对定位方法。利用基于传感器复合证据理论的方法构建目标路径的不可视地标(如磁场变化、WiFi更新等),检测GoPro Fusion设备获取的全景影像中的视觉显著的可视地标及其与采样点间的相对空间方位属性;根据行人实时获取的传感器数据和地标方位信息分别推估行人在目标路径中可能停留的路段区域;采用贝叶斯概率融合方法融合可视地标与不可视地标数据进行行人定位结果推估。实验结果表明,融合多源数据可以解决单一场景下行人定位精度不足的问题。在传感器特征较少的单一场景下,与基于不可视地标的行人定位方法相比,该方法的精度提升了12.78%。
-
单位武汉大学测绘遥感信息工程国家重点实验室