摘要
针对钢铁企业实际生产过程中,采用单一预测模型进行预测难以把握大规模启停设备用电规律,预测精度较低等问题,根据生产-检修阶段的实际工艺情况,将生产,检修问题采用随机近似贪婪搜索RAGS对复杂特征进行特征选择,建立了一个自适应数据质量的多模型择优预测框架进行建模;将其应用于宝钢电网。仿真结果表明,提出多模型择优预测框架可以准确预测钢铁企业电力日负荷,为实现电力系统能源调度提供决策依据。
-
单位上海宝信软件股份有限公司; 自动化学院; 沈阳航空航天大学