摘要

基于飞机的历史QAR(Quick Access Recorder,快速存取记录器)数据构建数据集,对数据集进行参数选择、数据预处理、数据集划分等操作,目的是提高模型的运行效率和准确度;使用改进粒子群算法对SVM(Support Vector Machines,支持向量机)的分类参数进行优化,使模型的分类效果达到最优;为了验证模型的故障检测效果,将收集到的某航空公司A320系列飞机的引气系统QAR数据进行预处理并导入模型故障检测,最终将检测结果进行验证。结果表明,使用改进粒子群算法优化的SVM对飞机引气系统进行故障检测,可以提高故障检测的准确率,提前发现潜在的故障,减少故障发生的可能性。

全文