摘要
灰狼优化算法(GWO)是一种模拟狼群等级制度和捕食行为的群体智能算法,存在收敛精度低、易陷入局部最优解等问题,为提高GWO的算法性能,提出一种基于Tent映射和正态云发生器的改进灰狼优化算法(CGWO).在灰狼群初始化阶段引入Tent映射,增加种群个体多样性以提高算法的优化效率;在攻击猎物阶段采用正态云模型对狼群位置进行更新,使算法前期具有较好的随机性和模糊性,提高全局开发能力,助其跳出局部最优解.随着迭代次数增加,自适应调整正态云模型熵值,使后期随机性和模糊性随之减小,有效改善局部开发能力,提高其收敛精度.选用20个通用的标准测试函数对CGWO算法性能进行验证,分别从单峰、多峰以及复合函数寻优结果与多种优化算法进行对比分析.结果表明,在同等测试条件下, CGWO算法寻优效率和收敛精度更高,能很快跳出局部最优解,在全局搜索和局部开发能力上更为平衡.
- 单位