摘要
目的 探讨X线摄影影像组学对乳腺肿块良、恶性鉴别诊断的价值。方法 选取乳腺肿块136例患者的相关X线摄影及病理资料,采用人工智能Mask R-CNN算法对乳腺肿块的精确分割,应用回归算法建立模型并验证,利用ROC曲线及决策曲线评价模型,并使用Delong检验比较不同模型的效能,同时将Shap方法应用于模型的解释。结果 筛选后最终纳入乳腺侧斜位(MLO)视角21个特征,头尾位(CC)视角20个特征,两个融合视角38个特征进行建模。三个模型在测试集中对乳腺肿块良恶性判别的AUC值分别为0.842、0.843、0.955。且MLO视角的组学特征建模模型和CC视角的组学特征建模模型效能差异无统计学意义(P=0.9454),两个单视角模型与融合视角模型ROC曲线下面积差异有统计学意义(P=0.0012和P=0.0059)。结论 基于乳腺X线摄影多视角融合模型对良、恶性肿块的鉴别具有较大的应用价值。
-
单位首都医科大学附属北京友谊医院; 北京市隆福医院