摘要
针对普通的三维卷积神经网络(3D CNN)从一个尺度上提取特征,会丢失部分细节信息,且对小样本任务表现一般的问题,本文提出了一种三支路的3D CNN,从不同尺度上提取特征后进行加权特征融合,从而获取了更为全面的特征;并引入数据增强技术,从而改善了小样本情形下的分类性能。现有特征融合方法通常对各个支路直接进行拼接,本文采用加权拼接的特征融合方法,将各特征分别乘以一个加权系数后再进行拼接,该系数通过模拟退火算法求取。本文方法在公开数据集Indian Pines,Pavia University,Salinas等上采用10%的数据进行训练,分别得到了98.60%、99.83%、99.97%的总体准确率,与各类对比方法相比,提升了高光谱遥感影像分类问题的准确率。
- 单位