摘要
为提高大型建筑火灾环境中人员的疏散效率,解决动态环境中的多智能体路径规划问题,文中提出一种基于全局引导策略的多智能体深度强化学习路径规划EG2RL模型。该模型通过火灾数值仿真技术模拟建筑室内火灾环境,并将深度强化学习与多智能体相结合进行路径规划;同时,对全局引导策略和神经网络结构进行改进,以更加适用于复杂动态且多出口环境时的多人员疏散情况。疏散人员基于全局引导信息的帮助,能够在动态的火灾环境中避免拥挤,躲避障碍物,并向安全出口移动。最后,进行半导体厂房中火灾仿真及火灾环境中人员疏散训练实验。结果表明,文中模型可用于建筑室内火灾环境中的多人员疏散,相比于其他方法,该模型能够优化人员疏散的路径选择,提高人员疏散的效率。
- 单位