摘要

根据侧面人脸合成正面人脸一直是计算机视觉领域中的一个难题。对此设计基于条件流的人脸正面化生成对抗网络模型。采用Glow模型作为生成网络实现高效的推理和合成;采用条件实例归一化层(CIN)来控制正面人脸的生成;采用变分判别器瓶颈(VDB),以潜在变量对身份进行判别,生成身份一致的正面人脸。在Multi-PIE数据集上进行实验,实验分析表明,该网络模型可以生成更具真实性和多样性的正面人脸图片。