摘要

该文考虑次临界Choquard方程■(0.1)多解的存在性,其中N> 3,λ是正实参数,pε=2μ*-ε,ε> 0,0 <μ<N,2μ*=(2N-μ)/(N-2)是Hardy-Littlewood-Sobolev不等式意义下的临界指数.假定Ω:=int V-1(0)是RN中非空带光滑边界的有界区域,利用Lusternik-Schnirelman定理,该文证明了当λ足够大及ε充分小时,方程(0.1)至少有catΩ(Ω)个正解.