摘要

加速器束流轨道校正对于加速器稳定运行具有非常重要的作用,精确预测加速器束流轨道的变化对于实现束流自动化校准也具有重要意义。通过对束流轨道变化的准确预测,可以为调整加速器控制参数提供可靠的信息,从而实现对束流的精确控制和调节。通过研究束流在直线加速器中等能量传输段的传输过程,利用模拟加速器数据,基于多级级联的反向传播(BP)神经网络搭建了加速器束流轨道预测模型,能够实现对束流轨道参数的预测。结果表明,与采用传统单隐层BP神经网络建立的预测模型相比,多级级联BP神经网络能够实现更高的预测精度与可靠性,为直线加速器中等能量传输段的优化设计和束流轨道自动化校准提供了一种有效的方法。