提高土壤全氮含量检测的精确性对于精准农业具有非常重要的意义。本文基于近红外光谱技术,对光谱数据预处理方法进行研究。以土壤全氮含量为检测对象,采用平滑+一阶导数、基线校正+归一化、一阶导数+归一化等方法对采集样品的光谱数据进行预处理方法干预,并运用PLS算法分别建立土壤全氮含量的预测模型,分析不同种预处理方法对于近红外光谱建模精度的影响。实验结果表明应用基线校正+归一化处理后建模得到的预测均方根误差RMSEP为0.025,决定系数R2为0.98,预测精度最佳。