摘要

为了进一步提高空气质量指数预测精度,提出一种混合遗传蚁群算法优化BP神经网络的方式对空气质量指数进行预测.首先初始化蚁群算法的信息素分布,对不满足适应度条件的进行遗传算法的交叉、变异操作,进而计算蚁群的状态转移概率和信息素浓度,当适应度值满足条件要求时,将寻优结果作为BP神经网络的最优权值和阈值,来改善单一BP神经网络的不足.最后通过运用西安市的空气质量指数日历史数据进行验证,实验表明,本文所提模型的各个评价指标相对其他对比模型误差更小,在预测精度方面具有更高的说服力,因此能够有效地预测空气质量指数.

全文