摘要

为解决红外块张量模型中利用核范数难以找到张量秩的非凸逼近,得到的非最优解进而影响红外小目标检测,提出了一种基于去雾增强和张量恢复的红外小目标检测算法。首先,利用改进后的暗通道算法对红外图像去雾增强,提高清晰度的同时间接增强了红外图像中背景的低秩性;其次,筛选匹配的张量正面切片去构建红外块张量模型,在张量奇异值分解的框架下,将检测任务转化为张量恢复问题;最后,设计一种快速算法恢复出红外图像中的低秩成分和稀疏成分,运算简单降低算法复杂度。相较于滤波和人类视觉系统的方法,该算法在复杂背景下的误检率平均下降16.6%,在常见的高亮背景区域中检测性能良好,误检率可降低33%。实验结果表明:该算法可以适用于复杂场景,剔除潜在的虚警点。