摘要

心血管疾病是威胁人类健康的常见疾病,为了能够更加准确地对其预测,本文在传统DNN模型基础上进行优化改进,提出定向正则的深度神经网络(TR-DNN)模型,通过改进原有深度神经网络模型所存在的缺陷,使其能够更好地对心血管疾病数据集进行训练并测试,进一步实现心血管疾病预测任务。实验表明该模型在数据集训练上的表现良好,并且在测试集上取得优秀的结果。最后,将TR-DNN与SVM、RF、XGBoost模型在同一数据集进行结果比较,TR-DNN模型的各项评价指标均优于其它模型,在准确率方面相较传统DNN模型提高1.507个百分点,召回率提高1.57个百分点,特异度提高2.54个百分点,精确率提高1.51个百分点。因此,TR-DNN模型可以应用于心血管疾病的预测。