摘要
高光谱遥感通过利用许多窄电磁波波段获取包含丰富的空间、辐射和光谱信息,在对地观测研究领域扮演着重要角色。随着深度学习的迅速发展,深度神经网络及深度森林等算法在高光谱遥感图像分类任务中得到广泛应用,但同时也产生了一系列困难,如对训练样本数量需求高、模型训练耗时以及分类代价大等问题。将深度学习与迁移学习结合,能够有效解决上述问题,在高光谱遥感图像分类领域得到初步应用。本工作首先介绍高光谱遥感图像分类的相关背景,之后介绍深度学习在高光谱遥感图像分类中的应用,并指出其具有的优势与不足,最后介绍深度迁移学习在高光谱遥感图像分类中的应用,并对当前研究存在的问题进行总结与展望。
-
单位中国地质大学(武汉); 青岛科技大学; 电子工程学院; 自动化学院