摘要
本文提出了基于可切换空洞卷积与注意力导向的特征金字塔网络(SwitchableDilatedConvolutionsand Attention-guidedFPN,SDA-FPN)模型,通过加入不同空洞率的可切换空洞卷积使模型能够根据任务选择不同感受野的特征图;引入注意力导向模块(Attention-guideModule,AM)增强特征语义信息且减少空洞卷积对文本边界信息的破坏。针对各尺度特征融合不充分导致语义信息丢失,提出了特征增强融合模块(FeatureEnhancementFusionModule,FEFM),通过结合注意力机制增强模型对尺度、空间、任务的感知能力。该方法在公开数据集ICDAR2015取得了较好的检测结果,且召回率有明显的提升。
- 单位