摘要
本发明公开了一种基于深度学习的在校大学生信用评估方法及装置,方法包括:A:获取待评估学生的信用数据;B:使用word2vec框架将信用数据样本中的文本信息转换为词向量,再使用预先训练好的LSTM模型针对待评估学生对应的词向量进行处理得到文本特征指标数据;C:将待评估学生的信用数据中除文本信息以外的其他信用数据进行特征赋值并进行归一化处理,得到非文本特征指标数据;D:利用预先训练的BP神经网络将学生文本特征指标数据和非文本特征指标数据作为连续性输入映射到连续性输出,得到待评估学生的目标信用评估结果。应用本发明实施例,可以提高针对学生的信用评估的效率及准确性。
- 单位