摘要
为了提高语音情感识别的准确度,探讨了将Transformer应用于语音情感识别的可能性.将对数梅尔尺度谱图及其一阶差分特征相融合作为输入,使用Transformer来提取分层语音表示,分析注意头个数和Transformer编码器层数的变化对识别精度的影响.结果表明,在ABC、CASIA、DES、EMODB和IEMOCAP语音情感数据库上,相比以MFCC为特征的Transformer,所提模型的精度分别提高了13.98%、8.14%、24.34%、8.16%和20.9%.该模型表现优于递归神经网络(RNN)、卷积神经网络(CNN)、Transformer等其他模型.
- 单位