摘要
为解决羊肉—猪肉掺假快速检测这一问题,利用多光谱仪器对掺假羊肉进行光谱采集,得到样品在350~1 100nm波段下的反射率。对数据预处理后,利用粒子群算法(PSO)对最小二乘支持向量机(LSSVM)进行优化,建立了基于粒子群优化的最小二乘支持向量机模型(PSO-LSSVM),与偏最小二乘(PLS)、反向传播神经网络(BPNN)和LSSVM 3种模型结果进行比较,结果表明,PSO算法能有效优化LSSVM模型,预测的决定系数和均方根误差分别为0.920 4和0.089 2。进一步采用随机青蛙算(RF)、无信息变量消除法(UVE)、竞争性自适应重加权法(CARS)提取特征波长并建立偏最小二乘模型,结果显示,UVE-PLS模型预测集的决定系数和均方根误差分别为0.996 7和0.016 2,UVE优于其他特征波长提取方法。
-
单位河北农业大学; 衡水志豪畜牧科技有限公司