摘要

准确地光伏预测对电力调度、容量分析和机组组合至关重要。现有的数据驱动预测算法在计算速度和预测精度上有一定的提升,但未能考虑光伏发电的内在机理,存在泛化的风险。针对上述问题,提出了一种基于Stacking框架的机理模型和数据驱动结合的预测模型。其中,光伏发电机理模型将嵌入Stacking框架一层预测结构,构成基于长短期记忆神经网络(long short-term memory, LSTM)、极度梯度提升树(extreme gradient boosting, XGBoost)和机理模型的并行预测学习器。机理模型将光伏发电限制在一个合理的范围内,作为数据驱动模型的预测约束。所提出的模型能够从机理模型中提取有用的固有信息,并利用数据分析的能力提取历史数据中的非线性关系。基于安徽省某地区实际数据分析,所提模型相比传统数据驱动方法具有更高的精度。

  • 单位
    国网安徽省电力有限公司电力科学研究院; 自动化学院; 安徽大学