摘要

多尺度熵是一种有效衡量机械振动信号复杂度的非线性动力学方法。针对其存在的不足,引入精细复合多尺度熵(Refined composite multiscale entropy, RCMSE),在此基础上,结合自编码降维和遗传优化支持向量机,提出一种滚动轴承故障智能诊断新方法。首先,利用RCMSE提取滚动轴承振动信号多尺度复杂度特征,构建初始特征向量矩阵;其次,采用自编码对初始高维特征数据降维,得到低维流形特征;然后,将低维特征向量输入到基于遗传优化支持向量机的多故障模式分类器中进行训练、识别与诊断。最后,将所提方法应用于实验数据分析,并与多尺度熵方法进行对比,结果表明,该方法不仅能够有效诊断滚动轴承的工作状态和故障类型,而且识别率高于所对比方法。