摘要

目的针对战车主减速器温度预测需求,建立时间序列ARIMA多步预测和BP神经网络预测模型,提出基于BP神经网络修正误差的ARIMA模型温度预测方法。方法结合BP神经网络的非线性能力与ARIMA模型预测能力,分析ARIMA在多步预测时误差产生原因,在神经网络对ARIMA多步误差进行预测基础上计算修正因子,把误差修正因子和BP网络结合,实现对多步预测误差的修正。结果ARIMA模型多步预测时,预测误差随预测步数的逐步增加不断增大,引入了误差修正因子进行修正。通过预测值与实际值进行对比,可有效提高预测准确度。结论 BP神经网络和误差修正因子结合应用可显著提高温度预测效果。

  • 单位
    中国人民解放军海军航空工程学院