摘要

针对茶园拖拉机传统故障诊断对故障信息的采集存在严重滞后性的问题,提出一种基于模糊神经网络(fuzzy neural network, FNN)的茶园拖拉机远程故障诊断系统(remote fault diagnosis system, RFDS).该方法融合模糊算法和神经网络的优点,通过对车辆运行的实时监控,远程处理车辆信息,获取车辆潜在的故障和实时故障信息,避免了传统方式需进行的大量检测,为维修争取到了更多的时间,提高了生产效率.该系统以仿真软件Carsim为基础,利用Carsim实时模拟车辆运行情况,通过训练集和测试集对算法模型进行训练和验证,结果表明:FNN诊断算法满足系统性能要求,准确率可以达到90%以上,可远程准确诊断茶园拖拉机故障.此外,RFDS技术对于车辆的开发也有重要的作用,可以在车辆的研发阶段通过远程故障诊断系统进行车辆性能评估,节省了大量的人力资源.