摘要
收集6个产地凌霄花样品的近红外光谱,构建支持向量机(SVM)模型进行产地鉴别.运用竞争自适应重加权采样(CARS)算法提取特征波长变量,在此基础上建立CARS-SVM产地判别模型.将该判别模型与线性判别分析、偏最小二乘判别分析和簇类独立软模式法3种模型进行比较.结果表明,SVM模型对不同产地凌霄花样品的鉴别结果良好,经CARS提取特征波长后,波长变量数从1 557减小至52,所构建的CARS-SVM模型对6个产地样品的判别准确率较高,明显优于上述3种模型.因此,近红外光谱技术可快速准确判别凌霄花的产地,为凌霄花的产地鉴别与质量评价提供一种新的方法.
-
单位江苏省食品药品检验所; 福州大学; 福建卫生职业技术学院; 厦门海洋职业技术学院