摘要
传统经验模态分解(EMD)存在模态混叠,难以充分提取故障特征,原始支持向量机(SVM)、相关向量机(RVM)诊断方法核函数存在选取不灵活、结构复杂导致识别效率低的问题,提出了一种结合变分模态分解(VMD)样本熵和混合布谷鸟改进M-RVM的机械传动电机轴承故障诊断新方法。首先,对故障信号进行VMD分解得到多个子序列;然后,筛选其中的有效分量提取样本熵组成故障特征向量;最后,将特征向量输入基于混合布谷鸟算法优化的M-RVM故障诊断模型,达到对电机运行状态准确识别的目的。仿真结果表明,所提方法实现了电机轴承故障状态的准确诊断。与传统分析诊断方法相比,该方法轴承故障识别诊断性能得到提高,对实际工程应用具有重大意义。
- 单位