摘要
行星齿轮箱作为页岩气压裂机组、海上风电机组等油气行业大型装备的关键部件,因工作中表面温度过高,或不允许改造(如打磨、钻孔)等限制了接触传感器(如振动传感器)的安装。为此,设计了行星齿轮箱声学和电机电流信号的非接触传感器采集方法;针对信号特征提取困难、特征不完备,以及诊断网络参数量大、计算效率低的问题,设计了新颖的轻量化多尺度解耦卷积网络方法,实现了行星齿轮箱声学和电机电流信号特征的深度融合。采用多尺度解耦卷积网络,提取声学信号和电机电流信号中对微弱故障及类间差异敏感的特征;进行标准卷积、串行并行计算以实现特征融合,使得特征相互补充,增强完备性;引入金字塔池化模块减少特征丢失。在行星轮断齿、缺齿和行星轮轴承保持架裂纹等典型故障模拟试验中,采集了声学信号和电机电流信号,对本方法进行验证,诊断准确率达99.73%。对比结果表明:轻量化多尺度解耦卷积网络融合诊断的效果优于标准卷积网络和同类结构网络;同时结合声学和电机电流信号的方法相比传统的接触传感器,以及单一非接触传感器有更高的诊断准确率和更强的抗噪性。研究结果可为行星齿轮箱的故障诊断提供参考。
- 单位