摘要

随着互联网技术的快速发展,网络服务于各类行业,域名数量与日俱增的同时恶意域名的检测也变得愈来愈困难且更加重要。恶意服务常利用域名生成算法(DGA)逃避域名检测,DGA域名常见于一些僵尸网络和APT攻击中,针对DGA域名可以轻易地绕过传统防火墙和入侵检测设备、现有方法检测速度慢、实用性不强等问题,采用深度学习技术,基于LSTM设计了DGA域名检测方法,从海量域名样本中分辨出异常域名,借助机器代替人力完成这样重复性的工作。经实验结果证明,该方法检测准确率高达99.1%以上,是有效可行的。同时结合流量探针构建实时监测系统,实时准确地监测流量中的DGA域名,提高网络空间安全性。

  • 单位
    中国电信股份有限公司

全文