摘要

目的符合用户视觉特性的3维图像体验质量评价方法有助于准确、客观地体现用户观看3D图像或视频时的视觉感知体验,从而给优化3维内容提供一定的思路。现有的评价方法仅从图像失真、深度感知和视觉舒适度中的一个维度或两个维度出发对立体图像进行评价,评价结果的准确性有待进一步提升。为了更加全面和准确地评价3D图像的视觉感知体验,提出了一种用户多维感知的3D图像体验质量评价算法。方法首先对左右图像的差异图像和融合图像提取自然场景统计参数表示失真特征;然后对深度图像提取敏感区域,对敏感区域绘制失真前后深度变换直方图,统计深度变化情况以及利用尺度不变特征变换(SIFT)关键点匹配算法计算匹配点数目,两者共同表示深度感知特征;接下来对视觉显著区域提取视差均值、幅值表示舒适度特征;最后综合考虑图像失真、深度感知和视觉舒适度3个维度特征,将3个维度特征归一化后联合成体验质量特征向量,采用支持向量回归(SVR)训练评价模型,并得到最终的体验质量得分。结果在LIVE和Waterloo IVC数据库上的实验结果表明,所提出的方法与人们的主观感知的相关性达到了0. 942和0. 858。结论该方法充分利用了立体图像的特性,评价结果优于比较的几种经典算法,所构建模型的评价结果与用户的主观体验有更好的一致性。