摘要

在水下连续发射过程中前一发航行体尾流会对后一发航行体运动姿态稳定性产生流动干扰现象.因此,研究尾流中涡旋结构演变机理对解决多弹体水下连续发射流动干扰难题具有重要的意义.本文采用改进型分离涡模型与能量方程, VOF多相流模型与重叠网格技术相结合方法,对航行体水下发射尾流演变过程开展精细化模拟研究,其中模拟结果和实验吻合度较好,验证了本文数值方法的有效性.以航行体尾流区域为重点研究对象,分析了尾流区瞬态流场分布,讨论了横流强度和雷诺数对尾涡结构演变以及脉动压力分布特性的影响.结果表明:由于尾流区高速流体核心区与低速自由流相互作用导致Kelvin-Helmholtz不稳定现象出现,可以清晰地发现涡旋结构在剪切力的作用下发生脱落.在横流条件下,航行体尾端脱落的涡环与涡腿形成发卡涡,而多个发卡涡沿轴向间隔排列组成发卡涡包存在于尾流中.随着横流强度增大,形成多级发卡涡包结构,而导致脉动压力二次峰值均出现的主要原因是尾流涡旋流场演变引起的.随着雷诺数的增大,尾流中由圆柱形涡和U型涡组成的二次涡结构逐渐明显,不稳定性加强.