摘要
提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通道进行权重分配,提升有用的特征权重并抑制无效的特征权重.为了增强网络的泛化能力,对训练数据集进行一系列增强处理.实验结果表明,改进后的算法在VOC数据集(07+12)上的检测效果良好,平均精度均值为80.4%,比改进前的算法提高了2.7%;在COCO数据集(2017)上的平均精度均值为42.5%,比改进前的算法提高了2.3%.所提算法能够准确检测出不小于16×16像素的目标.
- 单位