摘要

大田水稻生长环境复杂,稻穗尺寸相对较小,且与叶片之间贴合并被遮挡严重,准确识别复杂田间场景中的水稻稻穗并自动统计穗数具有重要意义。为了实现对局部被叶片遮挡的小尺寸稻穗的计数,设计了一种基于生成特征金字塔的稻穗检测(Generative feature pyramid for panicle detection,GFP-PD)方法。首先,针对小尺寸稻穗在特征学习时的特征损失问题,量化分析稻穗尺寸与感受野大小的关系,通过选择合适的特征学习网络减少稻穗信息损失;其次,通过构造并融合多尺度特征金字塔来增强稻穗特征。针对稻穗特征中因叶片遮挡产生的噪声,基于生成对抗网络设计遮挡样品修复模块(Occlusion sample inpainting module,OSIM),将遮挡噪声修复为真实稻穗特征,优化遮挡稻穗的特征质量。对南粳46水稻的田间图像进行模型训练与测试,GFP-PD方法对稻穗计数的平均查全率和识别正确率为90.82%和99.05%,较Faster R-CNN算法计数结果分别提高了16.69、5.15个百分点。仅对Faster R-CNN算法构造特征金字塔,基于VGG16网络的平均查全率和识别正确率分别为87.10%和93.87%,较ZF网络分别提高3.75、1.20个百分点;进一步使用OSIM修复模型、优化稻穗特征,识别正确率由93.87%上升为99.05%。结果表明,选择适合特征学习网络和构建特征金字塔能够显著提高田间小尺寸稻穗的计数查全率; OSIM能够有效去除稻穗特征中的叶片噪声,有利于提升局部被叶片遮挡的稻穗的识别正确率。