摘要
针对粒子群优化算法进化前期需大幅维度变动以搜索更多新区域,后期因仅有几维未达到最优解而陷入局部最优等问题进行研究,提出优质个体最优动态空间变异的粒子群优化算法。在挑选出优质的个体最优粒子后,选择其两个不同维度,使其中一个维度向另一维作莱维飞行,得到新的变异维度值,且进行变异的维度随迭代次数的增加而减少,种群多样性进一步提高,勘探与开发能力得到平衡。将提出的算法与新近改进的高水平粒子群算法在12个基准函数上进行比较,实验结果表明该算法在求解精度和收敛速度上更具优势。
-
单位江西省水信息协同感知与智能处理重点实验室; 鄱阳湖流域水工程安全与资源高效利用国家地方联合工程实验室; 南昌工程学院