摘要

提出一种基于二阶隐马尔可夫模型(HMM)的新闻分类算法,旨在提取新闻内容中的类别字,构成特征词集合.以该特征词集合作为不同二阶HMM分类器的观察序列,二阶HMM的隐藏状态反映了文档中词语之间的相关性差异,每个状态表示出现在语料库中的词语的相关性水平.实验结果表明,相比k近邻(k NN)、朴素贝叶斯(Naive Bayes)以及支持向量机(SVM)算法,二阶HMM算法的分类表现更显优势.