摘要
[目的 /意义]提出利用社会标签自动分类图片情感类型的方法,服务基于情感特征的图像检索与利用。[方法/过程]以Flickr图片为例,利用PMI算法对Word Net-Affect词表进行预处理形成典型情感词表;结合Ekman提出的6类基本情感类型,利用标签对图片情感类型进行标注;并且,通过实验对分类标注效果进行验证;最后,讨论图片特点、标注意图、非情感标签数量对分类标注效果的影响。[结果 /结论]研究发现,一幅图片的非情感标签与情感标签在表现图片整体情感类型的倾向性上具有较高一致性;结合PMI算法,利用预处理后的典型情感词表标注图片的结果优于未处理的Word Net-Affect词表;并且,分类标注效果与人工标注结果也具有较好的一致性,其中,快乐类(Happy)和忧伤类(Sad)图片的分类标注一致性最高,惊讶类(Surprise)的分类标注一致性最低;分析发现,仅通过标签标注图片情感类型的过程中,分类标注效果与图片情感的典型性、单一性以及图片发布方和欣赏者意图、动机的差异、图片的非情感标签个数都有关系。
- 单位