基于VMD-LSTM的非侵入式负荷识别方法

作者:王毅; 易欢*; 李松浓; 冯凌; 刘期烈; 宋如楠
来源:电子技术应用, 2023, 49(02): 127-132.
DOI:10.16157/j.issn.0258-7998.223024

摘要

非侵入式负荷识别(Non-Intrusive Load Monitoring, NILM)技术仅基于家庭电源总入口处的电流、电压信息,获得室内电器设备的电气信息。提高负荷识别的精度,对于优化能源结构、提高电能利用效率、降低能耗、节约资源具有重要意义。首先应用变分模态分解(Variational Mode Decomposition, VMD)对归一化的电流信号分解为K个IMF分量,再估计各个分量与归一化电流信号的相关系数,挑选相关系数最大的两个分量作为负荷特征,输入训练好的LSTM神经网络进行识别。算例测试结果表明,该方法在公开数据集PLAID上的识别率高达99%,在实验室采集的数据集上的识别率为96.6%,证实了所提出方法对提升负荷识别精度有显著效果。

全文