摘要
在位场数据处理中,垂向导数具有重要的物理意义。其在一定程度上可以划分不同深度和大小异常源产生的叠加异常,且导数的阶次越高,这种分辨能力就越强,但通常认为高阶导数的换算是不稳定的。本文在Tikhonov正则化求位场垂向高阶导数的基础上,结合迭代法进行逐次逼近,提出了位场高阶导数的Tikhonov正则化迭代法,并且得到Tikhonov正则化迭代法的递推公式。通过对该方法的滤波特性分析可以看出,该方法计算的位场垂向高阶导数具有一定的稳定性及保幅性。模型试验和实际数据的处理表明,该方法计算结果较常规FFT求导法有更高的稳定性和实用价值。
- 单位