摘要

机械设备实际工作过程中正常样本丰富、故障样本匮乏,卷积神经网络在处理这种分布不平衡的数据时对少数类的识别率很低。为解决上述问题,提出一种代价敏感卷积神经网络,首先经过多层卷积和池化运算学习原始监测数据中的机械设备本征性能状态知识;其次通过全连接层将本征性能状态知识映射为机械设备健康状态;最后利用代价敏感损失函数为少数类样本赋予较大的误分类代价,实现对不平衡的机械故障数据的有效分类。为验证所提方法的有效性,使用具有不同不平衡比的刀具数据集和轴承数据集,利用代价敏感卷积神经网络以及主流的分类算法分别测试其对于不平衡数据的分类性能。实验结果表明,所提方法对不平衡数据集中的少数类样本识别率相对于传统卷积神经网络提升了22%以上。