摘要

在大数据时代的背景下,个人信用数据指标日益繁杂。为降低个人信用数据冗余性,使用基于随机森林与梯度提升决策树组合的特征选取方法;提出混沌粒子群算法优化XGboost信用评估模型参数,提高个人信用评估准确性。实例分析结果表明,CPSO-XGboost相比XGboost、Logistic和SVM在个人信用评估中具有更高的稳定性和准确性。

全文