摘要

针对传统K-means聚类算法受初始类中心影响导致聚类准确度较低的问题,利用量子粒子群优化算法全局搜索能力强、收敛速度快的优势,提出一种基于改进量子粒子群的K-means聚类算法.为防止量子粒子群优化算法陷入局部极值,采用具有高斯扰动的局部吸引子以提高种群跳出局部最优的能力;为提高算法的收敛速度,采用加权更新种群平均最优位置以充分发挥精英粒子的优势;通过对收缩-扩张因子和随机变量参数进行交叉实验,选出最佳参数组合策略.在标准测试函数上的仿真结果表明:改进的量子粒子群优化算法在寻优精度、收敛速度以及稳定性上都有显著提高;通过对比7种聚类算法在UCI数据集上的聚类结果可知,所提出的聚类算法具有更好的聚类性能,可以有效降低K-means对初始聚类中心的依赖.最后,将该方法应用于我国鲜食葡萄市场客户分类中,以验证该方法的有效性和实用性.通过实证分析可知,基于改进量子粒子群的K-means聚类算法结构简单、精度高,具有一定的推广性.

全文