摘要
高斯混合模型(GMM)易受噪声影响,马尔科夫随机场(MRF)模型能够很好地刻画空间特性。两者结合适用于对含有噪声的图片进行分割,但MRF模型用于图像分割时,容易出现过分割现象。针对这个问题,提出一种自适应权值系数的图像分割改进算法,从核磁共振成像(MRI)中较好地分割出脑脊液、灰质和白质组织。首先,使用K-means算法得到初始分割结果,通过期望最大化算法(EM)估计GMM参数,进而得到图像像素灰度的联合概率能量函数。然后,利用MRF邻域系统中心像素与邻域像素的灰度值、后验概率和欧式距离得到自适应的权值系数,使用MRF模型得到先验概率能量函数。最后,借助贝叶斯准则得到最终图像分割结果。实验结果表明,该算法具有较强的自适应性,能够较好地克服噪声对图像分割的影响织。与同类算法相比,该算法对含有噪声的脑部MRI图像具有较高的分割精度,可得到较好的图像分割结果。
- 单位