摘要
为了提高智能网联汽车在复杂城市交通环境下的乘坐体验,本文提出一种基于深度强化学习的考虑驾驶安全、能耗经济性、舒适性和行驶效率的多目标生态驾驶策略。首先,基于马尔可夫决策过程构造了生态驾驶策略的状态空间、动作空间与多目标奖励函数。其次,设计了跟车安全模型与交通灯安全模型,为生态驾驶策略给出安全速度建议。第三,提出了融合安全约束与塑形函数的复合多目标奖励函数设计方法,保证强化学习智能体训练收敛和优化性能。最后,通过硬件在环实验验证所提方法的有效性。结果表明,所提策略可以在真实的车载控制器中实时应用。与基于智能驾驶员模型的生态驾驶策略相比,所提策略在满足驾驶安全约束的前提下,改善了车辆的能源经济性、乘坐舒适性和出行效率。
- 单位