摘要

随着社交网络的发展,社会化推荐算法得到普遍应用,现有的推荐算法往往只是将一种社交关系引入到推荐系统,但在现实社交网络中用户之间往往存在多种社交关系。基于多子网复合复杂网络模型,利用共享用户特征矩阵,提出了基于多关系社交网络的矩阵分解推荐算法。通过在Epinions数据集上的实验结果分析,准确率评价指标MAE、RMSE和NMAE分别提高了34%、27%和7%,由此可以证明,多关系社交网络的矩阵分解推荐算法能有效提高推荐准确率。

全文